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Nomenclature

b = width of the beam
C1, C2, C3, C4 = Lagrange cubic interpolation functions
Ec = Young’s modulus of the core material
h, hf = height of the beam, face sheet
hb, hc, hp = one-half the height of the bottom, core, and

top layer
L, Le = length of the beam, a representative element
NE, NT = matrix of shape functions for face sheets

modeled using Euler-Bernoulli or
Timoshenko beam theory

qeE , qeT = vector of nodal displacements of a
representative element for when the face
sheets are modeled using Euler-Bernoulli or
Timoshenko beam theory

uE, uT = vector of field variables for when the face
sheets are modeled using Euler-Bernoulli or
Timoshenko beam theory

�ub, �uc, �up = longitudinal displacement of a differential
element of the bottom, core, and top layer

wb, wc, wp = transverse displacement of the bottom, core,
and top layer

zb, zc, zp = local through the thickness of the bottom,
core, and top layer

�c = Poisson’s ratio of the core material
�c, �� = density of core layer, and that of the bottom or

top layer
�b, �p = shear rotation of the bottom and top layer
! = circular natural frequency
~! = nondimensional circular natural frequency
_� � = time derivative of � �
� �i = ith nodal component of � �
� �0 = partial derivative of � � with respect to the

longitudinal coordinate

Subscripts

b, c, p = bottom, core, and top layer
e = representative element
f = face sheet
� = layer bottom or top layer

Superscripts

e, �e� = representative element
T = transposition of the matrix

I. Introduction

T HIS paper revisits the problem of the free vibration of soft-core
three-layer sandwich beams. An insight into the history of

sandwich structures, the current trends, and future expectations can
be gleaned from the paper by Vinson [1], who also provided
arguments for continued research.

The traditional proposed kinematics (see [2,3], for example) do
not permit core breathing or thickness stretching and cannot capture
boundary conditions that are solely applied to the face sheets.
Technological innovations in manufacturing and material science
have increased the use of soft- or flexible-core materials in the
construction of sandwich structures. This has necessitated the use of
high-order theories or kinematics that permit core stretching and
investigations in this regard include [4–14].

The objective of this technical note is twofold. The first is to
present an alternative derivation of the quasi-two-dimensional for-
mulation of Bekuit et al. [14]. Second is to demonstrate its
applicability to systems with laminated face sheets, which was not
reported in [14]. It is conjectured that the variation of the core
transverse deformation is quadratic through the thickness while that
of the axial deformation is cubic. The distinctions here are:

1) The transverse deformation of the core is described using the
components at the face-core interfaces and the component at the
midline.

2) The axial deformation components at the face-core interfaces
are employed in conjunction with the components located at one-
third of the core thickness away from themidline to represent the core
axial deformation.

Bai and Sun [8] also described their core deformation with
identical polynomial order in the thickness coordinate. However,
they involved Poisson’s ratio, as well as transverse normal and shear
deformations of the core. The present formulation solely employs
displacements at physical locations along the height of the sandwich
beam.

The performance of the proposed kinematics is investigated by
comparing the obtained simulation results with those in the literature
and also with those obtained using the ANSYS commercial finite
element code.

II. Mathematical Formulation

The schematic of the proposed sandwich beam elements models is
given in Fig. 1; the Euler-Bernoulli beam theory is used to model the
face sheets in Fig. 1a, and the Timoshenko beam theory is employed
for the face sheets in Fig. 1b. Hereafter, the former shall be identified
by the acronym Q2DE and the latter by Q2DT. The field variables of
the face sheets are given as

�u ��x; z�; t� � u��x; t� � z����x; t�; and

�w��x; z�; t� � w��x; t� for � 2 fp; bg
(1)

The implication is that the assumptions of the face sheet model
correspond to those of Timoshenko beam theory when the variable
���x; t� is independent, and to the Euler-Bernoulli beam theorywhen

���x; t� � @w��x;t�
@x

. The core axial deformation is assumed to vary
cubically in the through-the-thickness coordinate, and the transverse
deformation varies quadratically. These displacement field variables
are written as
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�u c�x; zc; t� � C1�ub�x; t� � hb�b�x; t�� � C2uc2 � C3uc3

� C4�up�x; t� � hp�t�x; t�� (2)

�wc�x; zc; t� �
zc
2hc

�
1� zc

hc

�
wt�x; t� �

�
1 �

�
zc
hc

�
2
�
wc�x; t�

� zc
2hc

�
1 � zc

hc

�
wb�x; t� (3)

where uc2 � �uc�x; zc �� hc
3
; t�, uc3 � �uc�x; zc � hc

3
; t�,

C1 ��
9

16h3c

�
z3c � hcz2c �

1

9
h2czc �

1

9
h3c

�

C2 �
27

16h3c

�
z3c �

1

3
hcz

2
c � h2czc �

1

3
h3c

�

C3 ��
27

16h3c

�
z3c �

1

3
hcz

2
c � h2czc �

1

3
h3c

�
and

C4 �
9

16h3c

�
z3c � hcz2c �

1

9
h2czc �

1

9
h3c

�
(4)

When the face sheets are modeled by Timoshenko beam theory,
the axial deformation of each layer is interpolated linearly along the
longitudinal axis, whereas the transverse deformation is interpolated
quadratically.

The vector of field variables is written as

u T � �up wp �p uc3 uc2 wc ub wb �b �T �NTqeT
(5)

where the vector of nodal displacements is written as qTeT�
�up1 wp1 �p1 uc31 uc21 wc1 ub1 wb1 �b1 wp2 wc2
wb2 up3 wp3 �p3 uc33 uc23 wc3 ub3 wb3 �b3 � The
interpolation of the axial displacement variable of the Q2DE model
is identical to that of Q2DT. However, the transverse displacement is
interpolated using a Hermite cubic polynomial. The vector of field
variables is given as

u E � � up wp uc3 uc2 wc ub wb �T �NEqeE (6)

where the vector of nodal displacements is defined as qTeE�
�up1 wp1 w0p1 uc31 uc21 wc1 w0c1 ub1 wb1 w0b1 up2 wp2
w0p2 uc32 uc22 wc2 w0c2 ub2 wb2 w0b2 �. The global finite

dimensional equations of motion of the system are readily derived
following the procedure outlined in [14].

III. Discussion of Results

Thematerial and geometric properties of the partially-cantilevered
sandwich beam (i.e., only the face sheets are cantilevered) used in the
first simulation, which are tabulated in Table 1, are obtained from
[6,7]. Table 2 shows the first ten natural frequencies. The results in
the last and fourth columns are obtained using ANSYS commercial
finite element software models in which Plane82 elements are
employed. Specifically, 1200 Plane82 elements (150 in the axial

a) b)

Fig. 1 Schematic of the proposed sandwich beam elements: (a) Q2DE and (b) Q2DT.

Table 1 Material and geometric properties for simulation #1

Component Material E (GPa) � � (kg=m3)

Face sheets Steel 210 0.30 7900
Core Divinycell® H60 0.056 0.27 60

L� 260 mm; w� 59:9 mm; hf � 1:9 mm; 2hc � 34:8 mm

Table 2 Comparison of natural frequencies for partially-cantilevered sandwich beam (simulation #1);
see also Table 1 of Sokolinksy and Nutt [7]

Frequency (Hz)

Mode Exp. [6] Classical FE [6] Frostig
and Baruch [5]

Sokolinksy
and Nutt [7]

Moreira and Dias
Rodriguez [11]

Q2DSB Q2DT Q2DE FE

1 152 165 165 165 165 164 164 164 165
2 544 476 512 511 512 512 508 508 508 512
3 950 859 913 910 912 912 902 902 903 913
4 1391 1316 1379 1373 1378 1376 1357 1357 1357 1380
5 1954 1871 1939 1928 1940 1897 1897 1899 1941
6 2532 2476 2393 2392 2578 2485 2485 2485 2472
7 2350–2400 3311 2509 2398 2395 2562 2510 2510 2510 2505
8 4208 2558 2430 2425 2617 2539 2539 2542 2551
9 4799 2567 2534 2524 2727 2559 2559 2559 2564

10 2511 5074 2608 2590 2612 2564 2564 2564 2610
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direction, 4 through the core, and 2 each through the face sheets) are
used for the last column. The poor performance of the classical
formulation method for situations of very low ratio of the core elastic
modulus to the face sheet elastic modulus (2:6667 � 10�4 in this
case) is readily observable. Further, the classical formulation cannot
capture the partially cantilevered boundary conditions. This
formulation is based on the following assumptions:

1) The top and bottom layers are modeled as Euler-Bernoulli
beams.

2) The layers have identical transverse displacement that is
independent of the thickness coordinate.

3) The core is modeled as a Timoshenko beam.
The results of [5,7] are virtually identical, indicating the negligible

effect of the definition of the acceleration of the transverse
displacement field variable, which was modified in the latter. Only
the three-layer layw4x results ofMoreira andDiasRodrigues [11] are
reproduced in Table 2 (i.e., column seven) because they are better
than those with five-layer layw4x. These results deteriorate between
modes 6 and 9, where core stretching is observed. The results using
the original quasi-two-dimensional formulation (Q2DSB) of Beikut
et al. [14] are in excellent agreement with those of Q2DTand Q2DE;
200 elements are used in each formulation. Although the quasi-two-
dimensional results are the best during core stretching, they are not as
good in the preceding lower modes, especially modes 4 and 5.

For a system with face sheets that are made from laminated
unidirectional composites, the material properties are taken from
Vidal and Polit [10] and are tabulated in Table 3. The finite element
simulations using ANSYS modeled the core using SOLID95
elements and the face sheets by Shell99 layered elements. The
system is unsymmetric with a 0/90/core/0/90 stacking sequence. For
L
h
� 10, 60 SOLID95 elements are used along the length of the core, 4

along the width, and 5 through the height. The number of SOLID95
elements employed along the length of the core for L

h
� 4 is 24. The

first five nondimensional natural frequencies, ~!�� !L2

h

�����������
� �
E22
�f

q
�, for

the case of simply supported boundary conditions of the face sheets

and length-to-height ratios L
h
� 4 and 10, are tabulated in Table 4. The

HSDT-33 is a high-order theory that uses third-order expansions for
the displacement fields; the ZZT is a zig-zag theory that satisfies
interface transverse shear continuity; the GLHT is a global-local
high-order theory; the HSDT-Reddy is Reddy high-order shear
displacement theory; and the SinRef-7p is a seven-parameter sinus
model in which the negative value of the slope of the midline
transverse deformation is not assumed to be the coefficient of the
linear component of the core through-the-thickness coordinate
variable. The performances of the GLHT, ZZT, SinRef-7p, Q2DT,
and Q2DE models, when benchmarked against the ANSYS
commercial finite element software results, FE, are competitive. The
Q2DT and Q2DE models capture modes 3 and 4, which exhibited
noticeable core through-the-thickness deformation for L

h
� 4.

IV. Conclusion

An alternative derivation of the quasi-two-dimensional sandwich
element formulation of Bekuit et al. [14] for free-vibration analyses
of soft-core three-layer sandwich beams is presented. Both yield
identical results as expected. The application of the formulation to
systems with laminated face sheets is demonstrated. Its performance
when core stretching is absent is generally not as good as those
involving core stretching.
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